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Abstract

We’ve previously reported* on experiments at the Omega laser at 
URLLE, in which 1.0 mm in diameter, Au coated, spheres, were illuminated 
at either 1014 W/ cm2 (10 kJ / 3 ns) or at 1015 W/ cm2 (30 kJ / 1 ns).

Spectral information on the 1 keV thermal x-rays, as well as the multi-
keV M-band were obtained.

We compared a variety of non-LTE atomic physics packages to this data 
with varying degrees of success. In this paper we broaden the scope of the 
investigation, and compare the data to newer models:

1) An improved Detailed Configuration Accounting  (DCA) method.
2) This model involves adjustments to the standard XSN non-LTE model

which lead to a better match of coronal emission as calculated by XSN to that 
calculated by SCRAM, a more sophisticated stand-alone model. 

We show some improvements in the agreement with Omega data when 
using either of these new approaches.

* E. Dewald, M. D. Rosen, et al Physics of Plasmas 15, 072706 (2008).
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Summary of new models’ performance

1) Omega Au 1-D sphere NLTE output analysis:
- Sub keV (~ thermal) emission:

- Good match to data for both models.
- M band: 

@ 1E15 / 1 ns
- DCA M band ~ 2x too high
- XSNLJS M band ~ 2x too low
@ 1E14 / 3 ns
- DCA M band ~ 3x too high
- XSNLJS M band ~ OK

2) Implications for NIF point design 2-D hohlraum ( vs. XSN ):
- Both of these newer models give a few % higher Tr .
- This is consistent with their ~ 10% higher conversion efficiency

in Omega Au spheres vs. XSN



UCRL-PRES-xxxxxx

We are testing 2 new non-LTE atomic models

1) DCA:
- Detailed Configuration Accounting
- PI is Howard Scott

2) XSNLJS:
- A judicially chosen “set of knobs” that adjust various 

excitation rates within the context of our “standard” XSN 
average atom model.

- These “knob settings” were chosen by Larry J. Suter in order 
to match the emissivity of Au at 0.2 ncrit for 1-3 keV as 
predicted by SCRAM, a very detailed atomic physics code due 
to  S. Hansen et al.

- Our previous studies were with standard XSN and with SCA.
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Au Omega sphere allows for 1-D simulations 
and for comparison to data

Te(x,t) (via Thomson Scattering)

E Laser absorbed (t) (via the FABS diagnostic)

E x-ray (h, x, t) (via Dante & other diagnostics)

Thomson volume
(60x100 um2)

Diagnostic view

TS1

TS2
4w probe 
beam

1-D simulations allow
for 400-zone runs:

very well resolved 
conversion efficiency 

layer
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“Typical” comparison of simulation with data� 
(@ 1015 W/cm2)

Data
30 KJ / 1 ns 1015 W/cm2
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

DCA: comparison of simulation with data� (@ 
1015 W/cm2) : M band is ~ 1.7x too high
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30 KJ / 1 ns 1015 W/cm2
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

XSNLJS: comparison of simulation with data� 
(@ 1015 W/cm2) : M band is ~ 0.6x too low

Data
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The general vanilla XSN spectral behavior vs. 
Target Material is modeled well (@ 1015 W/cm2)

Data
30 KJ / 1 ns 1015 W/cm2 at t= 0.9 ns

Au, U, CT XSN (no Auger) Simulations
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

DCA has trouble with  the  spectral shape for Au 
(@ 1015 W/cm2) : High M - band

Data
30 KJ / 1 ns 1015 W/cm2 at t= 0.9 ns
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XSNLJS has trouble with  Au  spectral shape (@ 
1015 W/cm2) : High Sub keV & Low M - band

Data
30 KJ / 1 ns 1015 W/cm2 at t= 0.9 ns

Au, XSNLJS Simulation
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
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Summary: 1015 W/cm2

M-BandTotal 

6301600DCA 0.15 / +

2501700XSNLJS   0.15 / +

3001600XSN   0.15 / -

Model (Type :  Flux limit / Auger)

4001600Data  (GW/Sr @ peak)
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“Typical” vanilla  XSN comparison of simulation 
with data� (@ 1014 W/cm2)

Data
10 KJ / 3 ns 1014 W/cm2
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

DCA0508 comparison of simulation with data� 
(@ 1014 W/cm2)- near perfection!

Data
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

DCA0908 comparison of simulation with data� 
(@ 1014 W/cm2)- now M band is 3x too high!
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

XSNLJS comparison of simulation with data� 
(@ 1014 W/cm2)- ~ same as XSN!
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The general spectral behavior vs. Target 
Material is modeled well (@ 1014 W/cm2)

Data
10 KJ / 3 ns 1014 W/cm2 at t= 2.9 ns

Au, CT XSN Simulations

0.5

GW/
sr.eV

0 1 2 3 4 5
0.0

0.5
Au
CT

In
te

ns
ity

 (G
W

/s
r.e

V
)

Energy (keV)

1014 W/cm2



UCRL-PRES-xxxxxx

The Au sub keV spectral shape is modeled 
especially well by DCA(@ 1014 W/cm2)

Data
10 KJ / 3 ns 1014 W/cm2 at t= 2.9 ns

Au, DCA Simulation
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QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

The Au spectral behavior is modeled ~ OK by 
XSNLJS (@ 1014 W/cm2)

Data
10 KJ / 3 ns 1014 W/cm2 at t= 2.9 ns
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Summary: 1014 W/cm2

3300Data  (GW/Sr @ peak)
M-BandTotal 

12300DCA 0.15 / +

4300XSNLJS   0.15 / +

2300XSN   0.15 / -

Model (Type :  Flux limit / Auger)
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NIF 2-D hohlraum point design sensitivites

• XSN: Auger / Di-electronic effects:
– Lowers Z-bar in Au corona by ~ 10%.
– Lowers Te in Au corona by ~ 10%.
– Raises Tr in hohlraum by ~ 5 eV or “Dante signal” by 7%

• DCA, XSNLJS:
– Rise in Tr consistent with their higher conversion efficiency as 

seen in the Omega Au Sphere simulations
– Running laser Power @ 0.9x can ~ reproduce Tr as seen in XSN
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NIF 2-D hohlraum point design sensitivites

• XSN: dotted line

• XSNLJS
– Upper: full power
– Lower: 90% power

• DCA
– Upper: full power
– Lower: 90% power

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
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